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Abstract—The algebraic soft decoding (ASD) algorithm
achieves advanced decoding performance for Reed-Solomon
(RS) codes. However, its complexity remains high making it
impractical. This is due to the interpolation. The progressive
ASD (PASD) algorithm adjusts the decoding computation to the
reliability of received information. Its interpolation generates the
intended polynomial Q(x, y) with a progressively enlarged y-
degree, and terminates once the message is decoded. But this
progressive decoding is realized at the cost of memorizing the
intermediate decoding information. This paper proposes a new
PASD algorithm, in which the progressive interpolation is realized
by the module minimization (MM) technique. Polynomial Q(x, y)
can be found through the progressively enlarged images of
submodule’s basis without memorizing the intermediate decoding
information. The MM interpolation also grants it a significantly
lower complexity than the original PASD algorithm that uses
Koetter’s interpolation. Our simulation results will verify its
advanced decoding performance and low-complexity feature.

Index Terms—Algebraic soft decoding, module minimization,
progressive decoding, Reed-Solomon codes

I. INTRODUCTION

Reed-Solomon (RS) codes are widely employed in commu-
nication systems and storage devices. The Berlekamp-Massey
(BM) decoding algorithm [1] can correct errors up to half of
the code’s minimum Hamming distance. The late Guruswami-
Sudan (GS) algebraic decoding algorithm can correct errors
beyond this limit [2]. Utilizing soft information, the Koetter-
Vardy algebraic soft decoding (ASD) algorithm can further
enhance the decoding performance [3]. However, complexity
of the algebraic decoding algorithms are still orders of magni-
tude higher than the BM algorithm. This is due to the interpo-
lation that finds the minimum polynomial Q(x, y). Currently,
it is realized by Koetter’s iterative polynomial construction
algorithm [4]. There exists several approaches to facilitate
Koetter’s interpolation, including the re-encoding transform
[5], Wu’s algorithm [6] and the progressive interpolation [7].
The latter results in the progressive ASD (PASD) algorithm.
It can adjust the decoding computation to the reliability of
received information, decoding the message with the smallest
parameter, i.e., degy Q.

It has been reported that the interpolation problem can be
solved using the concept of module [8]. One can formulate
a basis of module which contains bivariate polynomials that
interpolate all the prescribed points with their multiplicity.
Presenting the basis as a matrix over univariate polynomials,

the Mulders-Storjohann (MS) algorithm [9] can further reduce
it into the Gröbner basis. The interpolated polynomial Q(x, y)
is the minimum candidate of the basis. This interpolation
technique is called the module minimization (MM). Some
work including [8] and [10] have shown that using this tech-
nique, the ASD algorithm is less computationally expensive
in comparison to the case that uses Koetter’s interpolation. In
this paper, it is named the ASD-MM algorithm.

This paper introduces a new PASD algorithm in which its
progressive interpolation is realized by the MM technique,
namely the PASD-MM algorithm. In the original PASD al-
gorithm [7], the Gröbner basis is expanded according to the
progressively enlarged degy Q. However, during the expan-
sion, the newly introduced polynomial needs to be updated
using the intermediate decoding information. Hence, its low-
complexity feature is exchanged by memorizing the interme-
diate decoding information. Utilizing the MM interpolation,
this memory requirement can be removed. It also results in a
remarkably low complexity for the progressive soft decoding.
We will show the interpolation can be realized through the
progressively enlarged images of submodule’s basis. During
the enlargement, the newly introduced polynomial can be
directly generated from the enumerated interpolation points,
without the need of memorizing the intermediate decoding
information. Its decoding performance for the (255, 239) RS
code will be shown. Our numerical results will also verify the
proposal’s low-complexity and channel dependent features.

II. BACKGROUND KNOWLEDGE

This section presents the background knowledge of the
paper, including RS codes and the PASD algorithm.

A. RS Codes

Let Fq = {σ0, σ1, . . . , σq−1} denote a finite field of size
q, Fq[x] and Fq[x, y] denote the univariate and bivariate
polynomial rings defined over Fq , respectively. Given an (n, k)
RS code, where n and k are the length and dimension of the
code, respectively, message polynomial f(x) ∈ Fq[x] is

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1, (1)

where f0, f1, . . . , fk−1 are message symbols. Codeword c =
(c0, c1, . . . , cn−1) ∈ Fn

q can be generated by

c = (f(α0), f(α1), . . . , f(αn−1)), (2)
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where α0, α1, . . . , αn−1 are the n distinct nonzero elements
of Fq . They are called code locators.

B. The PASD Algorithm

Assume codeword c = (c0, c1, . . . , cn−1) is transmitted
through a memoryless channel and r = (r0, r1, . . . , rn−1) ∈
Rn is the received symbol vector. A reliability matrix Π of
size q × n can be obtained. Its entry πij = Pr[cj = σi | rj ] is
the symbol wise a posteriori probability (APP) 1. Matrix Π
will be transformed into a multiplicity matrix M of the same
size [3], whose entry mij (mij ̸= 0) indicates the interpolation
multiplicity for point (αj , σi). Interpolation finds the minimum
polynomial Q(x, y) that interpolates all points (αj , σi) with
their multiplicity mij . Given Q(x, y) =

∑
a,b Qabx

ayb ∈
Fq[x, y], its (1, k− 1)-weighted degree is deg1,k−1 Q(x, y) =
max{a+ (k − 1)b | Qab ̸= 0}. Let ij = index{σi | σi = cj},
codeword score is SM(c) =

∑n−1
j=0 mijj . The following

theorem gives a sufficient condition for decoding f(x).
Theorem 1 [3]. Given an (n, k) RS code, let Q ∈

Fq[x, y] denote an interpolated polynomial. If SM(c) >
deg1,k−1 Q(x, y), Q(x, f(x)) = 0.

Polynomial Q(x, y) is often constructed using Koetter’s
algorithm [4]. Parameterized by l = degy Q, Koetter’s inter-
polation starts with a set of l + 1 polynomials, i.e., Gl =
{1, y, . . . , yl}. They are iteratively updated, evolving into
the Gröbner basis in which Q is the minimum candidate
2. In contrast, the PASD algorithm functions with a pro-
gressively enlarged l. Beginning with l = 1, it finds the
minimum interpolated polynomial Q1 (degy Q1 = 1) from
a computed polynomial set G1 that is initialized as {1, y}.
If Q1(x, f(x)) = 0, the message can be decoded 3 and the
decoding terminates. Otherwise, G1 will be expanded by in-
troducing a new polynomial y2. The new polynomial needs to
be updated so that it satisfies the interpolation constraints that
have been satisfied by the existing polynomials of G1, forming
an expanded polynomial set G2 and |G2| = 3. The minimum
interpolated polynomial Q2 (degy Q2 = 2) will be selected
from a further computed set G2. Again, if Q2(x, f(x)) = 0,
the decoding terminates. Otherwise, the decoding continues
by enlarging l progressively. It terminates either when the
message is decoded or when l exceeds a predefined value.
Consequently, the PASD algorithm decodes the message with
the smallest parameter l. The above description shows that the
newly introduced polynomial needs to be updated using the
intermediate decoding information. The progressive decoding
system needs to memorize this information [7].

III. THE ASD-MM ALGORITHM

This section introduces the ASD-MM algorithm, which is
a prototype of the PASD-MM algorithm.

1It is assumed that Pr[cj = σi] =
1
q
,∀(i, j).

2Given Q1, Q2 ∈ Fq [x, y], and deg1,k−1 Q1 = a1 + (k − 1)b1 and
deg1,k−1 Q2 = a2 +(k− 1)b2, it is claimed Q1 < Q2 if deg1,k−1 Q1 <
deg1,k−1 Q2, or deg1,k−1 Q1 = deg1,k−1 Q2 and b1 < b2.

3The message polynomial f(x) can be validated using the maximum
likelihood criterion of [11].

A. Module Formulation

In order to determine the minimum interpolated polynomial
Q(x, y) where degy Q = l, module Ml is needed.

Definition I. Given a multiplicity matrix M, moduleMl is
the space of all bivariate polynomials over Fq[x, y] that inter-
polate all points (αj , σi) with their multiplicity mij (mij ̸=
0). They have a maximum y-degree of l.

Given matrix M, let

mj =

q−1∑
i=0

mij (3)

and
m = max{mj , ∀j}. (4)

The Π →M transform terminates when m = l [3]. In order
to formulate Ml, the following point enumeration is needed.
Let Lj denote an enumeration list that is drawn from column
j of M. It contains interpolation points (αj , σi) with their
multiplicity mij as

Lj = {(αj , σi), . . . , (αj , σi)︸ ︷︷ ︸
mij

,∀i and mij ̸= 0}. (5)

Note that |Lj | = mj . Its balanced list L′
j is further created.

Initialize L′
j = ∅. Move one of the most frequent elements

from Lj to L′
j and repeat this process mj times. The balanced

list can be denoted as

L′
j = {(αj , y

(0)
j ), (αj , y

(1)
j ), . . . , (αj , y

(mj−1)
j )}, (6)

where y
(0)
j , y

(1)
j , . . . , y

(mj−1)
j ∈ Fq and they may not be

distinct. Again, |L′
j | = mj . Finally, let mj(s) denote the

maximum multiplicity of the last mj − s elements of L′
j as

mj(s) = max{multi.((αj , y
(ε)
j )) | ε = s, s+ 1, . . . ,mj − 1}.

(7)
Note that mj(0) = max{mij , ∀i} and mj(ε) = 0 for ε ≥ mj .

The module Ml can now be generated. First, let

Fε(x) =

n−1∑
j=0

y
(ε)
j Φj(x), (8)

where ε = 0, 1, . . . , l − 1 and Φj(x) =
∏n−1

j′=0,j′ ̸=j

x−αj′

αj−αj′

is the Lagrange basis polynomial. Since Φj(αj) = 1 and
Φj(αj′) = 0, ∀j′ ̸= j, we have Fε(αj) = y

(ε)
j , ∀j. Therefore,

y−Fε(x) interpolates points (αj , y
(ε)
j ), ∀j. Note that if mj < l,

we assume y
(ε)
j = 0 for ε ≥ mj . Now Ml can be generated

as an Fq[x]-module by the following polynomials

Pt(x, y) =
n−1∏
j=0

(x− αj)
mj(t)

t−1∏
ε=0

(y − Fε(x)), (9)

where t = 0, 1, . . . , l. Note degy Pt(x, y) = t ≤ l. The above
equation defines the l+1 generators forMl. Since any element
of Ml can be presented as an Fq[x]-linear combination of
Pt(x, y), equation (9) forms a basis Bl of Ml.
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B. Module Minimization

In order to describe the minimization process, we need to
present Bl as a matrix over Fq[x].

Definition II. Let ξ = (ξ0(x), ξ1(x), . . . , ξl(x)) de-
note a vector over Fq[x], the degree of ξ is deg ξ =
max{deg ξτ (x), ∀τ}. The leading position (LP) of ξ is
LP(ξ) = max{τ | deg ξτ (x) = deg ξ}. Since ξτ (x) =

ξ
(0)
τ +ξ

(1)
τ x+ · · ·+ξ

(deg ξτ (x))
τ xdeg ξτ (x), the leading term (LT)

of ξτ (x) is LT(ξτ (x)) = ξ
(deg ξτ (x))
τ xdeg ξτ (x).

Given a matrix V over Fq[x], let V|t denote its row-t and
V|(τ)t denote its entry of row-t column-τ . Since Pt(x, y) =∑

τ≤l P
(τ)
t (x)yτ where P

(τ)
t (x) ∈ Fq[x], it can be presented

as a vector over Fq[x], i.e., (P
(0)
t (x), P

(1)
t (x), . . . , P

(l)
t (x)).

Therefore, Bl can be presented as an (l+ 1)× (l+ 1) square
matrix over Fq[x], where Bl|(τ)t = P

(τ)
t (x).

Definition III [9]. Given a square matrix V over Fq[x], if
any of its two rows V|t and V|t′ exhibit LP(V|t) ̸= LP(V|t′),
it is in the weak Popov form.

Now, let us define

Dv = diag(1, xk−1, . . . , xv(k−1)) (10)

and
D−1

v = diag(1, x−(k−1), . . . , x−v(k−1)). (11)

After Bl is formed by (9), it will be mapped as Al = Bl ·
Dl, so that degAl|t = deg1,k−1 Pt(x, y). Afterwards, the MS
algorithm that is shown in Algorithm 1 will reduce Al into
the weak Popov form A′

l. Demap it as B′
l = A′

l · D
−1
l , and B′

l

is the Gröbner basis. Polynomials P ′
0(x, y), . . . , P

′
l (x, y) can

be retrieved from B′l by P
′(τ)
0 (x) = B′l|

(τ)
0 , . . . , P

′(τ)
l (x) =

B′
l|
(τ)
l , respectively. Among them, the minimum one is chosen

as the interpolated polynomial Q(x, y). Factorize Q to yield
the message f(x) [12].

Algorithm 1 The Mulders-Storjohann Algorithm
Input: Al;

1: While Al is not in the weak Popov form do
2: Find two rows Al|t and Al|t′ such that degAl|t ≤

degAl|t′ and LP(Al|t) = LP(Al|t′);

3: Perform Al|t′ ← Al|t′ −
LT(Al|

LP(Al|t′ )
t′ )

LT(Al|
LP(Al|t)
t )

· Al|t;
4: End while

IV. THE PASD-MM ALGORITHM

This section introduces the proposed PASD-MM algorithm.
Let v denote the progressive iteration index and 1 ≤ v ≤ l.

A. Submodule and its Image

Submodule is the subspace of a module, which is defined
as follows.

Definition IV. Given a moduleMl that is generated by (9),
its submodule Mv is the subspace spanned by P0(x, y) ∼
Pv(x, y).

Note that since degy Pv(x, y) ≤ v, the basis of Mv can be
presented as a (v + 1)× (v + 1) square matrix over Fq[x].

For a balanced list L′
j , we define

δj(t) = mj(t)−mj(t+ 1) (12)

and t = 0, 1, . . . , l. Since mj ≤ l, mj(l + 1) = mj(l) = 0.
Consequently, δj(l − 1) = mj(l − 1) and δj(l) = 0. Let us
further define

Gt(x) =
n−1∏
j=0

(x− αj)
mj(t) (13)

and

Rt(x) =
n−1∏
j=0

(x− αj)
δj(t). (14)

Based on (12), it can be realized that

Gt(x) = Gt+1(x)Rt(x). (15)

Since mj(l) = δj(l) = 0, ∀j, Gl(x) = Rl(x) = 1.
Let {θηt } denote a set of η elements, each of which is

distinctively chosen from the integer set {0, 1, . . . , t − 1},
where 0 ≤ η ≤ t. Furthermore, let Θη

t denote a collection of
all sets {θηt } as Θη

t = {{θηt }}. Note that Θ0
t = ∅, |Θη

t | =
(
t
η

)
and |Θt

t| = 1. E.g., if t = 4 and η = 2, Θ2
4 = {{0, 1}, {0, 2},

{0, 3}, {1, 2}, {1, 3}, {2, 3}}. Finally, let 0ι×κ denote an all
zero matrix of size ι× κ.

With the above notations, generators (9) can be rewritten as

Pt(x, y) = Gt(x)Wt(x, y), (16)

where

Wt(x, y) =

t−1∏
ε=0

(y − Fε(x)) =

t∑
τ=0

w
(τ)
t (x)yτ (17)

and
w

(τ)
t (x) =

∑
Θt−τ

t

∏
ε∈{θt−τ

t }

(−Fε(x)). (18)

Note that w
(t)
t (x) = 1 and W0(x, y) = 1. The following

theorem further characterizes the basis Bv of Mv.
Theorem 2. The matrix representation of Bv can be written

as
Bv = Gv(x) · Ξv, (19)

where

Ξv =

[
Rv−1(x) · Ξv−1 0v×1

w
(0)
v (x) · · · w

(v−1)
v (x) w

(v)
v (x)

]
(20)

is the image of Bv.
Proof: Based on (16) – (18), when v = 1, B1 contains

P0(x, y) = G0(x),

P1(x, y) = G1(x)W1(x, y).

Since G0(x) = G1(x)R0(x),

B1 = G1(x) · Ξ1,

where

Ξ1 =

[
R0(x) 0

w
(0)
1 (x) w

(1)
1 (x)

]
.
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Similarly, B2 can be written as

B2 = G2(x) · Ξ2,

where

Ξ2 =

 R1(x)R0(x) 0 0

R1(x)w
(0)
1 (x) R1(x)w

(1)
1 (x) 0

w
(0)
2 (x) w

(1)
2 (x) w

(2)
2 (x)


=

[
R1(x) · Ξ1 02×1

w
(0)
2 (x) w

(1)
2 (x) w

(2)
2 (x)

]
.

Continuing the deduction, Bv can be written as in (19).
Based on Theorem 2 and since Gl(x) = 1, we have

Bl = Ξl. Further recalling Definition IV, we have Bl = Bl.
Therefore, the following corollary can be led to.

Corollary 3. When v = l, Bl = Ξl = Bl.
Theorem 2 and Corollary 3 reveal that the basis Bl can be

progressively constructed through its images of submodule’s
basis. Recalling Algorithm 1, the MS algorithm performs mul-
tiple Fq[x]-linear combinations between rows of Al. This row
operations can be rescheduled as follows. The MS algorithm
can target the first two rows of Al. This is equivalent to
reducing matrix B1·D1 into the weak Popov form. Afterwards,
it can further target the first three rows of Al, which is
equivalent to reducing matrix B2 · D2 into the weak Popov
form. Continue the process until matrix Bl · Dl is in the
weak Popov form, and A′

l = Bl · Dl. Since Gv(x) is the
GCD of all bivariate polynomials of Bv, performing the
MS algorithm on Bv · Dv is equivalent to performing it on
Ξv · Dv . The following PASD-MM algorithm is proposed
based on the above observation. It aims to decode the message
from an intermediate interpolated polynomial Qv(x, y) where
degy Qv = v. The polynomial is retrieved from the weak
Popov form matrix Ξv · Dv .

B. The PASD-MM Algorithm

The algorithm aims to decode the message from one of the
progressively enlarged images of submodule’s basis. At the
beginning, v = 1, image Ξ1 is initialized as

P1,0(x, y) = R0(x), (21)

P1,1(x, y) = W1(x, y). (22)

Map Ξ1 into X1 = Ξ1 · D1 and the MS algorithm will reduce
X1 into the weak Popov form X ′

1. Demap it as Ξ′
1 = X ′

1 ·D−1
1 .

Polynomials P ′
1,0(x, y) and P ′

1,1(x, y) can be retrieved from
Ξ′
1 by P ′(τ)

1,0 (x) = Ξ′
1|

(τ)
0 and P ′(τ)

1,1 (x) = Ξ′
1|

(τ)
1 , respectively.

Among them, the minimum one is chosen as the interpolated
polynomial Q1(x, y). Further factorize Q1 to determine its
y-root. If Q1(x, f(x)) = 0, the message is found and the
decoding terminates. Otherwise, the decoding progresses to
determine Q2(x, y) where degy Q2 = 2. Image Ξ2 needs to
be constructed. Based on Theorem 2, it can be generated by

P2,0(x, y) = R1(x)P ′
1,0(x, y), (23)

P2,1(x, y) = R1(x)P ′
1,1(x, y), (24)

P2,2(x, y) = W2(x, y). (25)

Again, generate X2 = Ξ2 · D2 and the MS algorithm will
reduce X2 into the weak Popov form X ′

2. Demap it as
Ξ′
2 = X ′

2 · D−1
2 . Polynomials P ′

2,0(x, y), P ′
2,1(x, y) and

P ′
2,2(x, y) can be retrieved from Ξ′

2 by P ′(τ)
2,0 (x) = Ξ′

2|
(τ)
0 ,

P ′(τ)
2,1 (x) = Ξ′

2|
(τ)
1 and P ′(τ)

2,2 (x) = Ξ′
2|

(τ)
2 , respectively.

Among them, the minimum one is chosen as Q2(x, y). Again,
if Q2(x, f(x)) = 0, the message is found and the decoding
terminates. Otherwise, the decoding continues.

In general, at progressive iteration v − 1 (v ≥ 2), if Ξ′
v−1

is the image produced by the MS algorithm, polynomial-
s P ′

v−1,0(x, y), . . . ,P ′
v−1,v−1(x, y) are retrieved from Ξ′

v−1

by P ′(τ)
v−1,0(x) = Ξ′

v−1|
(τ)
0 , . . . ,P ′(τ)

v−1,v−1(x) = Ξ′
v−1|

(τ)
v−1,

respectively. Among them, the minimum one is chosen as
Qv−1(x, y). If Qv−1(x, f(x)) = 0, the message is found and
the decoding terminates. Otherwise, Ξ′

v−1 will be expanded to
Ξv in order to find Qv(x, y) where degy Qv = v. Based on
Theorem 2, Ξv can be generated by

Pv,t(x, y) = Rv−1(x)P ′
v−1,t(x, y), if 0 ≤ t ≤ v − 1, (26)

Pv,v(x, y) = Wv(x, y). (27)

Based on (17) and (18), we know Pv,v(x, y) can be directly
generated based on the balanced lists. It does not need to know
the intermediate decoding information. After generating Ξv, it
will be mapped by

Xv = Ξv · Dv. (28)

The MS algorithm will then reduce Xv into the weak Popov
form X ′

v. Further demap it as

Ξ′
v = X ′

v · D−1
v . (29)

Polynomials P ′
v,0(x, y), . . . ,P ′

v,v(x, y) can be retrieved from
Ξ′
v by P ′(τ)

v,0 (x) = Ξ′
v|

(τ)
0 , . . . ,P ′(τ)

v,v (x) = Ξ′
v|

(τ)
v , respec-

tively. Among them, the minimum one is chosen as the
interpolated polynomial Qv(x, y). Further factorize Qv. If
Qv(x, f(x)) = 0, the decoding terminates. Otherwise, the
decoding progresses by updating v = v + 1. If v > l, it
implies the designed maximum y-degree of the interpolated
polynomial is exceeded. The decoding also terminates with a
decoding failure. Otherwise, the above decoding continues.

The PASD-MM proposal is summarized as follows.

Algorithm 2 The PASD-MM Algorithm
Input: M;

1: Generate all balanced lists L′
j as in (6);

2: Initialize v = 1 and P ′
0,0(x, y) = 1;

3: Formulate Ξv as in (26) and (27);
4: Generate Xv by (28);
5: Perform Algorithm 1, yielding X ′

v;
6: Generate Ξ′

v by (29) to find polynomial Qv(x, y);
7: Factorize Qv. If Qv(x, f(x)) = 0, output f(x) and

terminate the decoding; Otherwise, update v = v + 1;
8: If v > l, terminate the decoding; Otherwise, go to 3.
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TABLE I
AVERAGE COMPLEXITY IN DECODING THE (255, 239) RS CODE

SNR (dB) 5.0 5.5 6.0 6.5 7.0 7.5 8.0
ASD 1.08× 109 1.11× 109 1.11× 109 1.08× 109 1.01× 109 9.48× 108 8.89× 108

PASD 2.39× 108 1.38× 108 3.48× 107 1.13× 107 1.10× 107 1.09× 107 1.09× 107

ASD-MM 2.92× 107 3.02× 107 2.82× 107 2.69× 107 2.57× 107 2.43× 107 2.31× 107

PASD-MM 2.05× 107 1.30× 107 3.23× 106 8.29× 105 6.94× 105 6.89× 105 6.87× 105

V. PERFORMANCE AND COMPLEXITY ANALYSES

This section provides the decoding frame error rate (FER)
and complexity performances of the PASD-MM algorithm.
The complexity is measured as the average number of finite
field arithmetic operations in decoding a codeword. Our results
are obtained over the additive white Gaussian noise (AWGN)
channel using BPSK modulation.

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5.5 6 6.5 7 7.5

F
E

R

SNR (dB)

BM

ASD-MM (l = 2)

ASD-MM (l = 4)

PASD-MM

(l = 2, 4, 8, 16)

Fig. 1. Performance of the (255, 239) RS code over the AWGN channel.

Fig. 1 shows the PASD-MM performance for the popular
(255, 239) RS code. It outperforms the conventional BM
algorithm, where the performance gain can be improved by
increasing the decoding parameter l, i.e., degy Q. This will be
at the cost of decoding complexity. Meanwhile, our simulation
results also verify that with the same decoding parameter, the
PASD-MM algorithm can achieve the same performance as
the ASD-MM algorithm. It demonstrates that the progressive
decoding maintains the error-correction capability of its non-
progressive prototype.

Table I further shows the average complexity in decoding
the RS code. For all algorithms, l = 4. Note that the ASD
and PASD algorithms employ Koetter’s interpolation. It shows
both of the progressive decoding algorithms are less complex
than their non-progressive prototypes. Although multiple fac-
torizations may be performed in the progressive decoding,
their complexity are marginal and can be compensated by
the progressive interpolation feature. As the signal-to-noise
ratio (SNR) increases, the received information becomes more
reliable so that the message can be decoded with a smaller
l, resulting in a smaller complexity. On the other hand, the
ASD-MM and PASD-MM algorithms are less complex than
their counterparts by at least an order of magnitude. This
thanks to the MM interpolation technique. Among the four

algorithms, the PASD-MM algorithm is the simplest. When
SNR = 7 dB, most of its decoding events terminate with
l = 1, resulting in a complexity that is far smaller than the
other algorithms. For this RS code, the BM complexity is
4.44×104. Again, it should be emphasized that the PASD-MM
algorithm removes the memory requirement of the original
PASD algorithm, becoming more friendly for implementation.

VI. CONCLUSION

This paper has introduced the PASD-MM algorithm for RS
codes. It exhibits an advanced decoding performance and a
low complexity that is also channel dependent. It generates
the interpolated polynomial with a progressively enlarged y-
degree. Using the MM interpolation, this can be realized
through the progressively enlarged images of submodule’s ba-
sis. This progressive decoding is realized without any memory
requirement, making it more friendly for implementation.
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